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Introduction

The goal of this effort was to construct a formalization of intuitive spatial reasoning – a ‘naïve geography’ – which was to be characterized by its attention to the foundations of cartography in particular.  During the support period we made headway on the foundational aspects of this project, which turned out to be harder than we had anticipated, and developed the outlines of a coherent approach to the semantics of maps which seems to be robust and very general. 

The report summarizes the basic work done on the main project and the state of the naïve geography theory at the end of the grant support period. We anticipate that this will be written up in a longer and more fully fleshed out form as a journal publication or monograph.

The foundational work produced one significant side-effect, which was a new insight into the nature of diagrammatic representations. This was published as a paper presented to a AAAI symposium, attached as an appendix.

1. Map Semantics

The basic presumption is that maps are a form of representation in the same sense that linguistic descriptions are, and that the basic semantic framework used to analyze the meaning of sentences should apply in its essentials to maps. This cartographic semantic assumption is one of the directing principles in the subsequent design. 

The relevant semantic theory is model theory. Model theory assumes that the expressions of the representation have a decomposable syntax; that is, that each expression has a unique ‘parsing’ into a recognisable structure containing other expressions. These constructions may be mutually recursive, allowing expressions of arbitrary complexity, as in natural language, or they may be more limited: but the key insight is that any expression is either atomic, or has a decomposition into subexpressions, and the meaning of the larger expression is then completely defined by the meanings of those subexpressions. Each way of constructing a larger expression has a semantic interpretation which is compositional; that is, it depends only on the interpretations of the subexpressions and the way they are put together. In algebraic terms, an interpretation function M  (read ‘meaning’) must satisfy equations of the general form:

(1) 
M( constr(x1,...,xn) ) = INTERP(constr)( M(x1), ... ,M(xn) )

where constr is the syntactic construction used at the top level of the expression and INTERP is the (fixed) semantic mapping from such a construction to its ‘meaning’. There is one such equation for each syntactic operation. We may write such equation in ‘vector’ form, where boldface indicates a vector of  arguments indexed from 1 to n, thus:

(1’) 
M( constr( x ) ) = INTERP(constr)(  M(x)  )

(Note that the second vector, in contrast to the first, indicates that there are n terms of the form  M(x), rather than the application of  M to n terms of the form  x. ) This equation needs to be made slightly more complicated in order to handle bound-variable syntax, but the complexities do not arise in our domain of application.

1.2 Located languages

The ‘syntax’ of a map requires careful analysis, since it operates in a fundamentally different way than conventional linguistic syntax. Semantic functions in this Tarskian account of meaning (which has been deliberately stripped to its bones, as it were, in order to make the task of generalisation easier) are all from the syntax to the interpretation; in cartographic terms, from the map to the terrain. In contrast, the interpretation of a map crucially involves a function from the terrain to the representation, ie the projection function which defines the relationship between the geometry of the map and that of the terrain it depicts. Geographic representations depend crucially on projection functions.

In cartography a projection function is usually taken to be a mapping between coordinate systems, but here, to keep the theory as general as possible, we will deliberately refrain from making a commitment to any underlying metric. We assume only that both the map surface and the terrain can be thought of mathematically as sets of locations, and define projection simply as a function from the set of locations which constitute the terrain to those which constitute the surface of the map. Exactly what counts as a location is deliberately left open at this stage. More elaborate theories can be obtained by imposing further restrictions on the structure of these sets. Intuitively, however, the most useful way to think of a location is as a patch or region of space which something occupies or indicates, or in which it is placed. Point coordinates can be thought of as a limiting case. 

1.2.2 Location spaces

Spatial ontologies are all based on some notion of location. Rather than take one off the shelf, as it were, we have followed a deliberate methodology of making as few assumptions about locations as possible, consistent with the cartographic semantic assumption. About the minimal assumption that all spatial  ontologies make is the set of locations is partial order by inclusion; this formally captures the basic intuition that locations can be inside other locations. Formally, then, we say that a location space is a set (of locations) with a transitive, reflexive relation called inside which satisfies the upper-bound axiom (below).  Intuitively, a is inside b  if the boundary of  b surrounds a, maybe exactly. We will also sometimes use the locution b encloses a, or of the largest or smallest location with a certain property, or speak of a as a sublocation of b; or, in formulae, the (deliberately) less intuitive notation a << b. (Although the term ‘contains’ is intuitive, we avoid it because of its established usage in set theory.)  A sublocation of a which is not identical to a, is a proper sublocation. All this terminology follows widely accepted useage in topology and mereology, although our theory differs slightly from existing mereological and topological fomalizations. 

This relation of being inside is central to our account, and plays several roles: as well as providing an algebraic account of projections, it allows us to talk of the granularity of a space or of a mapping. The set of points in a metric space do not form a location space, in general, but the power set (the set of subsets) does, as do the set of connected regions and the sets of regions of a particular shape (circles, rectangles at a fixed orientation, rectangles between gridpoints, arbitrary rectangles, etc.). Note that the same metric space can produce many different location spaces, depending on how locations are defined within it. The key requirement is that one can always find a ‘bigger’ location to include any subset of other locations. We will describe a collection of things distributed in space by a set together with a locating function, ie a  function from a set to a location space. 

1.3 Projection and denotation

A completed map often has an implicit claim to completeness: if a road is not indicated on the map, for example, then the map is saying that it isn’t present in the terrain. In AI this is called a closed-world assumption. For now, however, we wish to consider what might be called partial maps, which don’t make a closed world assumption. This enables us to consider parts of a map one at a time.

Part of the very concept of a map is its projection function, which relates layout on the map with position in the terrain being described. Here we assume that both the terrain and the surface of the map are location spaces, and that any domain of things on a terrain has an associated locating function, which we will call tloc (read ‘terrain location’), and that every map interpretation M has an associated projection function  projM  from the terrain to the map surface. Note that the projection function must be thought of an integral part of the interpretation, since the same map will have different meanings relative to the same domain if the projection is altered.

First we consider the simplest possible kind of map, where simple atomic symbols are placed on a surface to indicate the location of objects or structures on the terrain. There may be several kinds of symbols, each denoting a distinct class of object, but these symbols have no internal structure. For example, we might consider triangles indicating oil wells and circles indicating radomes. A particular symbol token placed on the map we will call a located symbol. Every located symbol has a map location, so located symbols also form a (syntactic) domain with a locating function, which we will call mloc (‘map location’.) Note that mloc locates expression tokens, not expressions themselves. A located symbol seems superficially analogous to a logical name in that it indicates an object. However, while every token of a name has the same interpretation, different located symbols, while tokens of the same symbol, have different referents (different circles denote different radar stations.) So located symbols are not (simple) names. The symbol type is also not a simple name, since it doesn’t refer to any object. In fact we will take these symbol types (triangle and circle, in our case) to be associated with predicates named in the map glossary.

Located symbols have a double aspect, similar to what Schlichtmann (1985) calls ‘plan’ and ‘plan-free’ aspects of map information. The ‘plan-free’ aspect corresponds to the information in the glossary, where we might learn that a circle means a radar station; but not, of course, which one. We could say that a located symbol, although having no syntactic structure, is a complex expression consisting of the token and its map location; the map location of a located symbol is part of its syntax. We will therefore regard a located symbol as a pair <P,L>, where P is the glossary entry associated with the symbol and L is the location of the symbol token. Located symbols are the basic components of cartographic syntax just as simple names are the basic components of logical syntax.

Take for example a single triangle placed at a location L on a (partial) map. This map is accurate just when there is an oil well - that is, something that satisfies the type predicate which is the meaning of the glossary entry “oil well”  - located on the terrain so that the projection function carries its location to L. To express this formally, we impose correctness conditions on an interpretation function M for a simple located symbol: 

(2)
 M(<P, L>) is true iff there is an object d in the domain such that

 




M(P)(d)   and   projM( tlocM(d) ) = L

where projM is the projection function from the terrain to the map and P is the predicate corresponding to the triangle symbol in the glossary. Note that this may not uniquely specify the location of d; in general, any interpretation of the map which places the object somewhere close enough for the difference to be invisible at the map’s resolution will be considered a correct interpretation of the map, i.e. one which makes the map true.

Equation (2) does not fit the form of equation (1) because it is expressed in terms of a mapping from the domain to the expression – from the terrain to the map – rather than the symbol-to-world direction of a denotation or interpretation mapping. It thereby poses the obvious question of how to invert this mapping; the inversion of the projection mapping would be a mappinig from each map location to a single terrain location which was the location ‘indicated’ by the map location. Since the projection mapping is not 1:1 in all interesting cases, we cannot simply invert it; we need to make extra assumptions in order to be able to produce a suitable inverted mapping. Note that the existence of an inverted mapping is required by the cartographic semantic assumption, so this is the first case of a spatial ontological principle – an axiom in our location theory – being directly motivated by a cartographic convention. 

The required sense of ‘inverse’ is that the value of the inverse of the projection mapping be a terrain location which at least has all locations which project into the map location as sublocations:


L << inverse-projM( mapL ) implies projM(L) << mapL

To achieve this, we need to know that such a value for inverse-projM always exists: we need to know that there is a single location which encloses all the locations which project to L. The simplest way to guarantee this, since projM may be any mapping and may apply to any location space, is to assume that any set of locations has a ‘covering’ location which has every member of the set as a sublocation. This is our main (and first nontrivial) axiom for locations: all location spaces satisfy the cover axiom:

(CA)
For every subset P of L there is a member b of L with x<<b for every x in P

If S is a subset of a location space, then a (smallest) location which encloses every member of S is a (minimal) cover of S.  A (minimal) closure S  of a set S is got by adding a (minimal) cover to it. Minimal covers may not be unique. For example, if we allow locations to be arbitrary rectangles, then two rectangles may have several minimal covering rectangles, none of which cover each other, in different orientations. We will write cov(P, L) to say that L is a cover of the set P. 

If every subset of a location space has a unique minimal cover then the space is directed.  Examples of directed spaces include the set of all circular regions, the set of all rectangular regions with a fixed orientation and the set of arbitrary convex polygons (where the minimal cover is a convex hull.) Notice that a minimal cover need not be the smallest piece of actual space that covers the set. Location spaces, unlike mereologies, need not be extensional.

Any location space L can be (trivially) extended to a directed space by allowing sets of locations to count as locations. Technically, consider the power set 2|L of all subsets of L, and define inside2|L on 2|L as follows: A inside2|L B iff for every a in A there is a b in B such that a insideL b. Following mathematical terminology, we call this the power space of L. Then for any subset P of the power space, its union UP is the unique minimal cover of  P. An example of such a power space is provided by arbitrary bitmaps on some grid of graphic pixels, where the minimal cover of a set of bitmaps is got simply by overlaying the pixel sets. Allowing a subset of locations to cover itself in this way can be thought of as giving the finest ‘resolution’ possible, but in practice it is often impossible to provide this much information about a set of locations.

Location spaces are defined solely in terms of there being ‘larger’ locations. No commitment is made to the existence of intersections, or of ‘smaller’ locations. In particular, there might be locations which have no proper sublocations, i.e. atomic locations, such as pixels on a screen. Also, it is possible that two different locations might intuitively ‘overlap’ without having a common sublocation in the space. An example would be the space of all circular regions with diameter greater than some fixed global resolution size. Both of these properties distinguish location spaces from the more well-known concept of a mereology.

If A and B are location spaces, and f  an order-preserving function from A onto B, then a function  \f  from B  to A is a right  inverse of  f if  f (\f(x)) = x for  all x, and /f is a left covering  inverse of  f  iff  /f (x) is a minimal cover of  {y: f(y) = x}. It follows that /f(f(x)) >> x.  Neither of these inverses is unique, in general.  A is directed just when every function from A has a unique left covering inverse.

Now we can restate equation (2) to fit the form of equation (1):

(3)
 M(<P, L>) is true iff there is an object d in the domain such that

 




M(P)(d)    and   tlocM(d) << /projM(L)

Where \projM is the left covering inverse of projM. In general, therefore, this form of the equation assumes that actual terrains described by maps are directed; however, it does not presume that the map surface is directed. 

1.4  Maps and sentences 

Part of our overall aim is to investigate the extent to which maps and sentences can express the same information in different ways. It is useful therefore to ask whether the content of this map can itself be expressed in a logical sentence. We can begin by simply transcribing the truth conditions to give the sentence:

(exists x)( P(x) & PROJ(TLOC(x)) = LL  )

Note the distinction between proj, a mathematical function, and ‘PROJ’, a formal symbol in a logical sentence (and similarly for other similar cases.) We expect that PROJ will mean proj, but this is not guaranteed automatically. Note also that the predicate symbol P is exactly that used in the map; it is copied from the map glossary.

The standard Tarskian semantics for this sentence makes it true in an interpretation M just when there is some d in the domain such that M(P)(d) and  M(‘PROJ’)(M(‘TLOC’)(d)) = M(‘LL’). This is equivalent to (3) if the interpretation function M  also satisfies the following conditions, where where mloc (the map locating function) satisfies the ‘wysiwyg
’ constraint   mloc(<x,y>)= y   for every located symbol <x,y>:

M(‘LL’) = L

(M(‘PROJ’)oM(‘TLOC’)) (M(x)) =  projM(mloc(x))

The first of these simply relates the syntax of the map to a symbol of the logical sentence; that is, it amounts to saying that the sentence be understood in a context that supplies an accurate theory of the structure of the map itself, which we will call a surface theory. This seems a reasonable requirement, though it does indicate the extent to which the map carries information automatically in its syntax, which must be made explicit in a logical formalization. The second condition essentially is the logical transcription of the statement that the map be accurate up to the accuracy required by the projection function, i.e. that the true location, denoted by TLOC, is somewhere on the terrain which would be projected onto the location of the located map symbol. Notice again that this allows that the interpretations of logical expression and map to differ, but only by an amount which is invisible at the spatial resolution provided by the map.

It might seem natural to simply require that M(‘PROJ’) = projM and  M(‘TLOC’) = tlocM, but this would be a stronger requirement on the theory than the map itself provides. Since tloc is a relation in the terrain, not the map, this condition would require that a logical description have access to an accurate theory of the true terrain location at a finer precision than the map itself provides. Moreover, the truth conditions for the map in fact allow slight deviations from a particular projection function, provide these are balanced by an appropriate change in tlocM. (This amounts to saying that the same map surface, interpreted under different projections, makes different statements about the true locations of things.) Notice also that we cannot simply assert M(‘TLOC’)  =  /projM(L). This amounts to saying that an oil well, for example, occupies the entire region within which it might be located according to the map; applied to a road map of the USA with the usual graphic conventions and typical scale, this would require interstate highways to be many miles wide. Notice the distinction here between the actual location of an object, and the region within which its location is fixed by a representation. The appropriate condition, which (assuming that M(‘PROJ’) = projM ) amounts to a restatement of condition (2) above, would be:

  M(‘TLOC’)  <<  /projM(L)

Geographical information can be presented in two ways. In a logical-style presentation, the functional relation between ‘located’ symbols and their locations must be made explicit, and some symbolic way is required to denote locations themselves. In a cartographic presentation the space of the map is a projection of that of the terrain, and the same functional relation is indicated by placing the primitive symbol token in the projected space. However, the key observation is that it is the same relation, involving the same amount of represented information in both cases, though portrayed differently. 

1.5  Complex map symbols

Some symbols have both a map location and a nontrivial syntactic structure. These fall into two cases, depending on whether, and how, these two structures are related. For example, a road might be denoted by a Bezier curve which can be parsed into a sequence of segments, each denoting the location of a particular part of the road. This kind of usage of a map symbol contrasts with, say, the printing of a town name near the symbol denoting the town. Both the road symbol - the line - and the town name denote objects in the terrain, and both have internal symbolic structure (characters and line segments), but the line differs in that its syntactic parsing is transparent to the location function: the location of the complex symbol, like that of the road it denotes, is itself comprised of the locations of its parts. 

Maps often use semantic conventions which are imposed on the spatial relationships between symbols, in addition to the purely ‘locating’ aspect of a located symbol. An example is the convention whereby a line indicating a road or highway meets a symbol representing a town or city, indicating that the actual road leads into the city. Unless the scale of the map is sufficiently large to indicate the internal spatial structure of the city itself, however, the inverse-projection convention alone is not sufficient to establish this meaning, since there is plenty of ‘room’ in the inverse projections of the city and road symbols for the actual road to miss the actual city. This observation shows that there is more to map semantics than our simple account has so far captured; which is not surprising given the very simple maps that were its inspiration. 

As an approach to a more nuanced and sophisticated map semantics, we extend the notion of glossary to allow particular kinds of spatial relationships between symbols in the map to indicate relations between the denotations. In this way, a map can use the surface location space in more “symbolic” ways to indicate semantic relationships which refer to aspects of the terrain that are too small or fine-grained to be revealed by the projection function on the map surface directly. Thus, the relationship between a line segment and a circle denoting a city in which the line segment connects with the circle with its tangent directed to the center of the circle – a relationship which can be defined in this case purely in terms of the mutual geometry of the locations of the symbols – can be considered to be itself a located symbol, and to have an associated glossary meaning that the road denoted by the line segment passes through the city center of the city denoted by the circle.  This corresponds directly to the use of relation symbol to denote a relation in a conventional logical syntax; and this kind of convention then fits the Tarskian framework of equation (1); but it requires us to concede that there are located symbols in the map whose presence is determined solely by the spatial arrangement of other symbols, and are not indicated by any characteristic lexical marks (such as line segments, circles or triangles). In other words, the map surface affords opportunities for the existence of symbols which have no corresponding glyph or mark. We will call these relational symbols. It is the presence of relational symbols that makes the task of describing the ‘logical’ syntax of maps so challenging, since traditional syntactic frameworks have not admitted these kinds of syntactic possibilities. Logical syntax for example is traditionally grounded in a set of ‘primitive’ symbols which are usually thought of as character strings; there is then no room for ‘invisible’ symbols. 

In fact any extended located symbol such as a line indicating a road can be thought of in this way.  A line can be conceptually divided into any number of line segments, so a linear located symbol  can be ‘parsed’ into many pieces; but it is a characteristic feature of such an extended located symbol that this parsing does not change the way the symbol refers.  Contrast this with, say, a town name written on the map surface. Both the road symbol - the line - and the town name denote objects in the terrain, and both have internal symbolic structure (characters and line segments), but the line differs in that its syntactic parsing is transparent to the location function: the location of the complex symbol,  like that of the road it denotes, is itself comprised of the locations of its parts. 

This can be captured precisely by the following equations, which we call the transparency conditions for a complex located symbol:

(4)
loc( constr(x1 ,..., xn ) ) = f( loc(x1),...,loc(xn ))


loc( INTERP(constr)(y1 ,...,yn ) ) = g( loc(y1 ),...,loc(yn ) )

where  f  and  g  are suitable functions. This is a special case of (1) where the interpretation mapping M is now the location function: that is, one can characterize such extended symbols as being such that their location is a part of their meaning. Extending the analogy gives the following version of eqn . 4:

(4’)
loc( constr(x1,..., xn)) = INTERP(constr)( loc(x1), ...,loc(xn) )

where  INTERP  now takes the relevant syntactic construction to an operation on locations. 

For example, suppose that the xi  are line segments and  constr  is  the operation of combining a sequence of such segments into a single linear symbol. Then (4’) says that there is a spatial interpretation function  –  INTERP(constr) – which yields the location of this line from the locations of the line segments. Exactly what this function is may depend on the application. For example, if a line is defined to be a sequence of line segments, as in many applied spatial ontologies, then this may simply be the list function. For our purposes here all that matters is that such a function exists, which is a way of saying that the location of a transparent symbol depends only on the locations of its parts.

Relational symbols are a natural generalization of located symbols, which have been defined as a pair of a location and a syntactic predicate; a relational symbol is a pair of a location and a syntactic relation (syntactic because it is a relation between other symbols). This affords opportunities for higher-order relational symbols, in which the relationship is itself between other relational symbols. An example might be a cartographic convention whereby road junctions – expressed as topological relationship of connection between line segments denoting roads – can themselves be labeled by placing a textual name written in a characteristic font or color immediately adjacent to the meeting-place of the lines on the map. As with higher-order relational calculi, we doubt if more than three or four of the infinitely many levels theoretically possible were ever used in practice. 

Although details remain to be developed, we are confident that the general framework outlined here, and the key concepts of location space, projections and inverse projections, and particularly of located symbols and relational symbols, provide a good foundation for the analysis of map semantics which differs in important respects from earlier attempts to provide such an analysis, perhaps most noptabnly in emphasizing the ways in which maps and symbolic languages have semantic conventions in common, rather than setting out under the assumption that symbolic and diagrammatic conventions are inherently different. Even though one does find differences, the differences found when trying to minimize superficial differences are more likely to be cogent and meaningful than those that arise from a pre-theoretical attempt at a representational taxonomy. 

As informal evidence for the generality of this nascent theory, we list some examples of maps which this analysis can be applied to, with sketches of how the theory applies.

1. Conventional road maps showing driving routes between cities and other terrain features.

2. Cloropleth maps showing district properties. The chloropleth rendering is considered a symbol property located in the rendered area.

3. Conventionalized ‘route maps’ such as diagrams of a subway system, eg the famous ‘London tube’ map. Here, there are two options. The terrain can be considered to be simply a ‘projection’ of the station locations onto the earth’s surface, ignoring geometry, and the lines considered simply as relational symbols indicating transportation connectivity; or, more interestingly, one can define a topological projection mapping which simplifies the terrain space while preserving connectivity. 

4. A ‘path diagram’ showing a single route can be treated as a map by defining a projection function that throws away all but path connectivity. This makes the route map an accurate map of a sub-location-space of the actual terrain, which is sufficient for driving since only local information is required at each decision point on the route. 

5. A series of driving instructions (of the form “go 3.5 miles, turn left at the Shell station, bear right at the next junction…”) can be viewed as a map whose surface is an ordered series of pieces of text and << means subsequence; projection works similarly to the previous example. Even though this would normally be classified as a purely symbolic representation, the fact that the theory applies to it shows how such a driving instruction document uses the document order to convey spatial ordering in a ‘map-like’ way. 

6. The theory makes no reference to the dimension of the spaces involved. The previous example used a one-dimensional map ‘surface’; at the other extreme, an architect’s model of a building can be described as a 3-d map whose ‘surface’ is a 3-d space containing pieces of 2-d surface regions. The located symbols are characteristic pieces of modeling texture and conventionalized uses of drawings of windows, doors, etc..

7. A movie showing movements of personnel and equipment over a map of a battlefield can itself be thought of as a 3-d (2 spatial plus time) map of a 4-d terrain enclosing the events diagrammed in the movie. Again, the dimensionality is irrelevant to the semantic framework, which applies to this case unchanged. The temporal movie ‘map surface’ also has many opportunities for particularly temporal relational symbols, eg conventionalized ‘explosions’ to indicate destruction of a target, or graying-out of a map symbol to indicate something which does not exist in the terrain at that time but did at some earlier time. 

2.  Location spaces, connectivity and boundaries

The above discussion shows that a very basic spatial ontology can contain axioms which are motivated by essentially cartographic intuitions: whatever space ‘really’ is, on this view, it must be possible to draw maps of it, so it must at least satisfy the cover axiom.  The cover axiom alone, particularly in its stronger version where one assumes the space is directed (so there is a unique minimal cover for every set of locations) is surprisingly powerful and can be used to derive many properties of any location space; in particular, it can be used to show that location spaces have many of the important properties of topological spaces. However, we do need another basic relation, which captures the intuitive idea of one location being a boundary of another.

Traditional mereologies and spatial ontologies have chosen ‘regular’ sets of points in a topological space as the basic category for a location, thereby excluding laminar boundaries ab initio.  Maps however abound with 1- and even 0-dimensional located symbols (eg intersection points indicating road segments with labeled mileages) and geographical terrain features include such entities as county and state boundary lines. We therefore expect our theory to treat boundaries as first-class entities; and then it is natural to define adjacency in terms of a shared boundary. 

The basic primitive relation, indicated by the symbol , holds between any part of the boundary of a location and that location itself. We assume that  is irreflexive and asymmetrical. Boundary parts are locations, but not all locations are boundary parts. However, following the intuition that boundaries are ‘thin’, we insist that any part of a boundary is itself a boundary part:

( x L and y << x ) implies y  L 

We can say that two locations are adjacent if they share a boundary part but have no non-boundary parts in common:

L adjacent M iff  

    ( (x << L and x<< M) implies (x L and x M) ) and for some z, z L and z M

Adjacency then captures the intuitive sense of ‘being next to’ in a location space. It would be natural to require of a map semantics that the projection function preserve adjacency as well as sublocation, although one can find examples where this would not be generally true if the terrain were described in the usual way, eg cases where a small but important stretch of coastline was too short to be rendered on a small-scale map. In practice, cartographers often prefer to distort the metric structure rather than fail to display the connectivity information represented by the adjacency relationship.

Other useful properties and axioms can now be defined and stated. For example, many spaces satisfy the following axiom which is tiresome to state formally but very useful and intuitively clear: it says that the boundary part in question has only two ‘sides’, i.e. is a separating boundary part:

SBP(x) =df 

 (x L and x M and x N) implies ( L o M or M o N or N o L)

where the relation o (for ‘overlaps’) is defined in turn by 

L o M =df  (exists K.  K<<L and K<<M) 

It is also possible to define various notions of ‘strong’ and ‘weak’ touching (eg where one location includes a boundary part of the other as a sublocation) and to establish various transitivity relationships between these.

A directed location space together with a relation  satisfying these axioms is called a boundary space. A space in which every boundary part is a separating boundary part is a regular boundary space. Regular boundary spaces are ‘surface-like’ in the sense that boundaries always divide the space locally into two sides, and they allow locations to be specified ‘precisely’ with no missing parts. 

2.1 Map boundaries

Boundaries in a terrain can be indicated by a variety of constructions on a map surface. The simplest for us to analyze is the case where a map boundary – for example, the boundary between two adjacent colored regions in a cloropleth map – indicates a boundary in the terrain. In this case, the semantics developed so far applies directly, provided the projection mapping preserves the adjacency structure. However, it is common for terrain boundaries to be indicated by explicit features on the map surface, such a boundary lines which themselves occupy locations which have an interior. In this case there are several options. One is to redefine the map surface as a location space in which the boundary lines are considered to be true boundaries, having no thickness; the other is to consider such lines to be located symbols which denote a boundary line in the usual way, but allow the projection mapping to map a boundary part to a non-boundary part. The latter seems the most natural, but it suggests that we need to relax the notion of a location mapping to allow this kind of ‘blurring’ of a boundary. To this end, define a mapping F between boundary spaces to be a weak homeomorphism if it satisfies:

L << M implies F(L) << F(M)  

 and  

L  M implies  K<< F(L) and K  F(M) for some K

Intuitively, the second condition says that F maps boundary parts into locations which have the projection of the boundary part as a sublocation. This allows a ‘true’ boundary in the terrain to map into a non-boundary location (such as the location of a line with a finite thickness) in the map surface.  If we now apply the left-inverse transformation to such a projection mapping, we can be sure that the boundary line denotes a region inside which the terrain boundary can be found, which is of course the intuitive meaning of the boundary-line map symbol, and conforms to the existential conditions for other located symbols. 

Although the above handles the basic map semantics for boundary lines, a more detailed analysis of boundary-line conventions shows up some subtleties, particularly on a pixelized screen surface. We spent some time analyzing the structure of locations and boundaries on a pixelized surface.

2.2 Pixel surfaces

Pixel screens provide a particularly interesting case for our theory, as they are discrete spaces – topologically trivial – which nevertheless provide a way to represent continuous terrains, and indeed to do so in a perceptually convincing manner. 

The actual location-space structure of the pixel surface is simple: locations are nonempty sets of pixels and << means subset.  To define a projection mapping one imagines a miniature continuous surface underlying the pixel screen, then maps every region to its nearest fitting region made up of pixels. Boundaries however are more subtle. We can define a true boundary on a pixel surface in terms of boundaries between the pixels themselves, which we call interpixels. Interpixels provide a natural extension of a pixel surface to a boundary space, and they can indeed often provide a natural location for a located boundary symbol, such as the boundary between two regions differentiated by distinct pixelized textures or colors. An alternative convention in widespread use in graphic systems, however, is that regions on the screen are defined by bounding outlines (eg of black) pixels; graphic drawing tools often use this notion when defining the functionality of a ‘paint-bucket’ tool which spreads a color throughout a region defined by the enclosing boundary in this sense. The natural idea of such a boundary is that it is a location on the screen which is connected in the sense that every pixel in the location is ‘connected’ to at least two other pixels in the sense that they either share an interpixel or share a pixel corner. This allows ‘diagonal’ lines to be drawn as a series of pixels touching at their corners, which is perceptually natural; but it allows two such lines to cross without intersecting, which is highly non-intuitive and is potentially troublesome. To avoid this, we define two slightly different versions of the pixel screen. In the simple boundary space, pixels meet at interpixels which are pixel-length ‘lines’ between pixels which are adjacent on the vertical or horizontal directions.  In the connected boundary space, we also include pixel ‘corners’ as boundaries and therefore as locations. This has the advantage that the interpixel boundaries themselves have boundaries, which is intuitive in a 2-dimensional surface (lines, 1-d, are boundaries of regions but have boundaries which are 0-d points); and it means that there is a natural notion of location for a slanting line which includes the ‘corner’ locations and therefore prevents lines from crossing without their locations intersecting. 

In sum, the ‘natural’ structure of a pixelized surface as a location space is that of a boundary space which includes ‘atomic’ locations corresponding to the pixels, their interpixels, and their corners. The resulting location space is what we call the location space of the surface. Note that this is always a boundary space: the simple sublocation relation is not sufficient, along, to capture the structure of a pixel screen.

3.   Relations to topology.

The development so far has some limitations. For example, a fundamental topological property of boundaries is that any path from the interior of one location to that of another must intersect with a common boundary part of the two locations, a ‘place where they touch’. Our development so far is not conceptually rich enough to describe this, however, since we do not have a notion of a ‘path’. Partly motivated by examples like this, we spend considerable effort in the last year of the grant support investigating ways of establishing deeper mathematical connections which could be defined between location spaces and more traditional mathematical models of space, particularly topology. This work is summarized in the this section.

Many of the spatial concepts we need are usually defined in terms of topological spaces, but we need alternative means of specifying them for location spaces, which have a quite different basic structure.  We begin with some definitions which lead to the notions of point, boundary, and interior.  Our construction is quite similar to the construction of a complete metric space. This work has shown that directed location spaces are much more similar to traditional metric topological spaces than one might at first suppose. 

Let L be a location space.   If C is any collection of locations, we say C is narrowing if and only if for every pair of locations Xand Y in C, there exists some location Z in C such that Z is enclosed by both Xand Y.  A point  of L is a maximal narrowing collection of locations. Notice that since the natural definition of a filter in our partial order is just an upwardly closed narrowing set of locations, points are just ultrafilters in the partial order. Intuitively, a narrowing set of locations is an approximation to some  ‘boundary’, and a maximal such set defines the boundary as tightly as possible using the locations provided by the original space  --- so that the what is bounded can be thought of as atomic.

Since that the union of a chain of narrowing sets is itself a narrowing set, a straightforward argument using Zorn’s lemma shows that any narrowing set can be extended to a point (in the sense above).  Since any collection of locations linearly ordered by the enclosure relation is narrowing, in particular ones consisting of a single location, this gives us a means of constructing many points on any nontrivial location space. The most natural example of a point is of course the collection of all sets containing a given atomic location p.   Not every point need correspond in this way to a particular location, however. For example, a point may have no corresponding location in the original space, but instead be defined by infinite sequences of smaller and smaller locations each contained in another. For example, suppose the location space consists of all open circles in R2; then every point z in R2 has a corresponding principal ultrafilter p(z) = {X: z is an element of X}.  As this example indicates, in general, points may not be first-order definable over the spaces they inhabit. 

 If C is a narrowing set, we would like to define both the interior and the boundary of the region determined by C .   

The interior of a location Y is the set of all points of which Y is a member. 

We can take the collection of interiors of locations as the basis of a topology.  Although our cover axiom is too weak to guarantee that the collection of interiors of locations are closed under finite intersections, the collection of unions of such sets is closed under finite intersection.  This follows since every point is a narrowing collection of locations, and, hence, if a point p is interior to both  X and Y, then there must be some further location Z(p) enclosed by both which the point is interior to.  It follows then that the union of all such Z(p)  for each p in the interior of both X and Y has each such p as a member and is therefore the intersection we seek.  We remark that this does not use the axiom of choice, since the intersection is just the union of all interiors of locations enclosed by both X and Y.  We refer to the topology with these sets as basis as the topology derived from the location space. 

When we begin with a complete metric space, and we use the collection of open balls in the metric space as our location space, the derived topology is homeomorphic to the one with which we began.   Let z be a point in the metric space; in this case, the collection of balls containing z is clearly a maximal narrowing set, p(z).  Let V be a point in the derived topology.  Since V is an ultrafilter in the partial order, it is maximal and narrowing. A relatively straightforward induction shows that there must then be an infinite strictly decreasing sequence under inclusion of balls B(n) each of diameter at most 1/n.   Since the metric space is complete, this sequence must converge to a point, z  and clearly p(z) is a subset of V, hence equal to V by maximality.  So p is surjective. Suppose B is an open ball in the original topology about a point z.  Clearly the interior of B  is an open set in the derived topology containing p(z) as a member.  So, since p is surjective, p is an open map.  

On the other hand, suppose we have an open basis set U in the derived topology and p is an element of U.  Then U is the collection of interior points of some location X.  By definition, any point z  of the metric space which is a member of this location must have this location X  as a member of the ultrafilter p(z)  in the location space.  So p is continuous, and it is obviously injective, since there are disjoint open balls about any two elements if the metric space.  Thus the spaces are homeomorphic under p.

The existence of this homeomorphism means that in the “ordinary” case of complete metric spaces, our notion of location works as required.  Nevertheless there are other examples which can, at first glance, seem quite counterintuitive. For example, we can take the natural numbers as our location space and say that n encloses m if and only if n<m.  Then 0 is our greatest element.  The result of deriving a topology is essentially equivalent to adding the point omega at infinity, then getting rid of all the other points, and having the almost-trivial discrete topology on this point.  The intuition here should be that topologically, our location space is trivial, since it is linearly ordered, and hence there is no significant difference between the locations - no distinctions can really be made; for under the construction outlined, 

A similarly awkward case is the following:  Suppose that the location space is the real plane and we allow both ordinary open sets and lines to be locations. In the derived topology, every line must be an open set.  Then, however, the derived space has the discrete topology.  The intuition here is that the line can be separated from the surrounding space.  Of course, if we have every line, then their intersections are all separated from each other too, which makes every point an open set.  So, in some sense this isn't problematic, it just shows that the ordinary topology for the space R2 is too fine for some purposes.  

A much more significant problem is raised by the following situation, though, and it is one that is ultimately more relevant to our final goals.  Consider a space which is pixelated, like the visual display for an ordinary desktop computer.   We can model such a structure formally as some large bounded part of the plane R2 and, allowing atomic "pre-locations" to be the interiors of squares bounded by line segments having as endpoints coordinates with integer values. (We can union these regions with their top and right edges, in order to get all of the space, if required.) The set of locations is then quite naturally thought of as consisting of all sets of these atomic pre-locations. The problem here is that the derived topology just gives us a discrete space with cardinality the number of pixels, so the topology fails to capture the adjacency structure of the pixel surface.  On the other hand, the whole purpose of a visual display is of course to picture something that does not have the discrete topology, namely some region homeomorphic to R2 considered as a complete metric space.  The problem is made more striking by considering the case of intersecting curves in the plane.  The natural representation of such a thing in a visual display, a pixelated space, involves two disjoint sets of pixels - the curves - such that two adjacent members of the first set are also adjacent to two adjacent members of the second set.   The problem we face is that the topological notion of adjacency, being a limit point, imposes far too stringent of a requirement when the topology is very fine relative to the space.

As our example shows, we are forced to go beyond topological notions and introduce a primitive notion of adjacency into any discrete location space which we wish to use to represent the location structure of a continuum like R2. So we define an adjacency space to be a location space with a symmetric relation A of adjacency which has the property, strengthening irreflexivity,  that if A(X,Y), then there exists no Z such that X and Y both include Z.  We could treat adjacency as just a particular kind of two-place relation on locations,  for example, like having a road connecting two places.  However, because maps typically represent some aspects of the topology of a continuum, adjacency has a very special status among relations on map locations.  For it is only with such a notion that nearness in the topological sense - that is, being a limit point - can be represented in a finite map of a continuum.  

We now weaken our definition of narrowing, defining a set C to be contacting  if both 

(1) whenever X and Y are elements of C, either there exists some location Z enclosed by both X and Y or there exist Z1 enclosed by X and Z2 enclosed by Y such that A(Z1,Z2), and 

(2).  there exist X and Y in C such that A(X,Y).

(2) ensures that a contacting set is not narrowing, since A(X,Y) implies that there is no common sublocation.   We define a boundary point of the adjacency space to be a maximal contacting set. As in the case of points and membership we say P is a boundary point if X if X is and element if P.   Notice that the union of a chain of contacting sets is a contacting set.  Hence, if A(X,Y), then X and  Y share a boundary point, since in that case the pair set of X and Y is contacting and so can be extended to a boundary point by Zorn's Lemma.  

This takes care of the problems raised by pixelation by introducing a space with a new topology.  The boundary points are new closed sets which are limit points of the pixels which are points that are open sets.  Such a space will not be T1, since the new boundary points are limit points of other (open) points, and so cannot be separated from them.  
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Abstract
We argue that a purely diagrammatic proof of a nontrivial mathematical theorem is impossible, because a diagram cannot indicate how it should be generalized. The case is made by subjecting a famous diagrammatic demonstration of Pythagoras’ theorem to a close examination, showing that it can be seen to be a demonstration of several different theorems. 
Introduction. 

We invite the reader, before reading further, to examine figure 1 and consider what, if anything, it suggests to them.
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Figure 1

There are many symmetries and coincidences in this figure; many ways, one might say, to understand it. All of the triangles are congruent and symmetric, and could be obtained by bisecting any one of the smaller squares. This figure might be a diagram of a piece of quilting, or an illustration of two tiling patterns, among probably hundreds of other possibilities; it has no obvious mathematical significance. However, if we modify it slightly, it becomes a famous ancient demonstration of Pythagoras’ theorem:
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Figure 2

Again, we invite the reader to (in the words of  the ancient text) “behold” this figure to see what it suggests. Many people can ‘see’  this as a demonstration of the truth of Pythagoras’ theorem, once they know that is what it is supposed to be.

Some people do not find the demonstration obvious without further explanation. Everyone seems to have a definite `aha!’ experience after which the demonstration seems convincingly sound. (For those who have learned that the proof of Pythagoras’ theorem is a complex or arcane matter, this moment of realization can provide quite a powerful epiphany; we have witnessed spontaneous gasps or cries of surprise, for example.) Everyone seems to need an initial period of inspection of  the diagram before understanding the demonstration, although for many this period is very short. There seems therefore to be some nontrivial cognitive business to be done, even when the purely perceptual machinery has finished (although once the demonstration is familiar, this may be reduced to a simple act of recognition.). 

To emphasize this, imagine someone who had no reason to be thinking about Pythagoras' theorem seeing figure 2 casually, without their attention being drawn to it. For them to realize that it constituted a demonstration would be a considerable cognitive step; it would be the kind of effort that we often characterize as a nontrivial act of noticing. Go further, and imagine someone who knew nothing about Pythagoras' theorem and had no special knowledge of areas or right angles, and suppose that person were to realize, upon being shown the diagram, that the theorem was true and that this was a demonstration of it. Such an insight would be an act of  genius, the kind that is celebrated in intellectual history, comparable to Archimedes’ overflowing bath or Kekuele’s snake dream. 

The diagram does not contain any information about what it is supposed to be a demonstration of, even assuming that we know that demonstration of some kind is its purpose (which is what the famous instruction “Behold!” may reasonably taken to be, of course.) The viewer needs to interpret the diagram in a  particular way in order to perceive the demonstration it illustrates. Contrast this with what we normally speak of as a  proof. In normal mathematical text the theorem is stated explicitly as a kind of header to the proof; the final sentence of a formal logical proof is the theorem. In both cases, there is no doubt about what the proof is proving.

(In case the reader does not see why the diagram is a demonstration of  Pythagoras’ theorem, note that the triangles are all isomorphic copies of the same right-angled triangle, and that each large square contains exactly four copies, occupying the same area in both squares, and therefore leaving the same area unoccupied. In one, this remainder is the (tilted) square on the hypotenuse of the triangle; in the other it has two parts, which are the squares on the other two sides of the triangle.)

In the rest of this paper we will refer to Fig. 2 simply as ‘the diagram’, to Pythagoras’ theorem as ‘the theorem’, to the use of the diagram to establish the theorem as ‘the demonstration’, and to the previous paragraph as ‘the explanation’.

On generalizing.

“Seeing” the demonstration does not involve literally seeing anything in the diagram that was previously invisible. Some further process of reasoning or comprehension is taking place. Without delving into the psychological details, we can ask what it is that people come to know when they understand the demonstration which they did not know previously.

The above explanation provides a clue, since it is in fact (deliberately) incomplete. It refers only to the particular triangles and squares in the diagram; but the theorem refers to any right-angled triangle. The generalization seems so obvious that this step is often missed, but it is crucial to the proof. The diagram is in fact acting as a kind of representative sampler of an infinite class of diagrams, including many which would be impossible to perceive (where the side of the large squares is a light-year but of the smaller square only the diameter of a proton, say.) The step, from seeing this particular diagram to understanding the demonstration, involves the realization that the right-angle triangle displayed there could have been any right-angled triangle, and the explanation would have worked just as well. 

The logic of this generalization is similar to the logical rule of universal generalization, which allows us to infer  (Forall x) (P x)  from  (P a)  provided that the name  a  has no conditions placed upon it by any assumptions used in the proof of (P a). The intuitive justification for this apparently counterintuitive rule is that if no particular conditions are placed on the name, then it could equally well have denoted anything at all, so the thing proved true of it must be true of everything. However, this rule cannot be applied directly to the information displayed in the diagram. Only part of it must be generalized, and the diagram itself does not indicate which parts to apply the rule of generalization to. 

This is made clearer if one contrasts a description of the diagram to the diagram itself, since a description does suggest a natural generalization. Using a standard technique we might describe the diagram as follows. 

There are congruent squares ABCD and EFGH, with a point P between A and B. Points J, K, L, M, N, R and S are located on BC, CD, DA, EF, FG, GH and HE respectively so that |AP| = |BJ| = |CK| = |DL| = |MF| = |FN| = |GR| = |SE|, with lines connecting PJ, JK, KL, LP, RN, MR and SN. The last two lines intersect at a point X, and a line joins E to X.  The result is shown in figure 3. 
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Figure 3

Strictly speaking, this is not the diagram; it is cluttered with labels which confuse the visual field and add nothing to the demonstration. But more significantly, notice that this description does not itself mention triangles at all. It requires a further perceptual step to see the right triangles in the figure. It is essentially a geometric construction algorithm with two free variables (the lengths of |AB| and |AP|) so this is more a description of a particular category than a description of the diagram itself. It already has a generalization incorporated into the way the diagram is described; but this generalization does not mention triangles.

It is possible to describe the diagram differently, mentioning triangles explicitly, in the following way. 

Take a right triangle and make four copies of it, rotating each one clockwise by a right angle with respect to the next. Align the vertices of these triangles to form a large square. Then take a similar square and place inside it four more copies of the triangle, arranged in two rectangles placed into opposite corners of the square. 

This description draws attention to the triangles, but leaves out other significant facts (such as that the corners of  the two rectangles coincide at X) which now require further inferences to be made. Like the previous description, however, this has a free parameter - the initial right triangle - and is therefore similarly prepared for universal generalization.

A description always mentions only some of the aspects of the structure shown in the diagram. But the descriptions always demonstrate the appropriate generalization, by specifying which aspects of the diagram are arbitrary and therefore susceptible to universal generalization. 

This is why figure 1 doesn’t work as a demonstration of the theorem, even though, just like the figure, it is simply one special case of the class exemplified by the figure. The extra perceptual coincidences when the right-angled triangle is symmetric distract attention from the intended generalization, and suggest alternative classes of  figures – alternative generalizations –  that it might be taken to illustrate.

Movies and other generalizations
The demonstration is made more vivid if the triangles are thought of as solid pieces of planar surface, i.e. as triangular tiles which can be moved around. If we think in this way, then the diagram can be reconstructed as follows. Take four copies of a  right-triangular tile which fit inside a large square, one in each corner and touching at their tips, so that they fit around a square made from their hypotenuseia. Now slide the leftmost tile down and to the right until its hypotenuse fits against the opposite tile, and then slide the bottom tile upwards, and the top tile to the left, until they meet in a similar way. Figure 4 shows the sequence of movements.
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Figure 4

This makes several things very clear: the relationship between the two halves of  the diagram, the preservation of area, and the length identities mentioned in the first description. The immediacy of this version of the demonstration depends on the fact that it can be expressed in terms which are so familiar from our everyday physical intuition. We all know that sliding a rigid object preserves its shape and its area, and that a right triangle is exactly half a rectangle; and this knowledge is at the surface of our thinking, as it were. Conclusions about such matters seem to require no effort or search, and require no further explanation or justification. They seem to be simply obvious. But it is important to realize that they are inferences. That our perceptual apparatus is very efficient at drawing such conclusions is a fact about our perception of space, but the conclusions so reached are, indeed, conclusions — they are based on  further facts which are not clearly present in the diagram itself. 
Just as figure 1 is, while a special case, a member of the same class of diagrams as figure 2, this figure itself is also a special case of a larger class of diagrams. This tile-sliding process works just as well when the triangles involved fit into a parallelogram rather than a square; in fact, they survive any shear, stretch, reflection or rotation applied to the diagram, as illustrated by figure 5.
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Figure 5

The reason that figure 5 is not considered to be a useful demonstration is not that it fails to demonstrate anything. There is a theorem it demonstrates, and indeed this theorem has Pythagoras’ theorem as a special case, just as the theorem suggested by figure 1 is a special case of Pythagoras’. It could be phrased thus: Given two triangles ABC and DEF, if the angles ABC and DEF are complementary, then the sum of the areas of the parallelogram with sides AB and DE, and sides AC and DF, both with angle ABC, is equal to the area of a parallelogram with sides AC and DF and angle (pi - ACB - EDF)

This theorem is not usually considered to be worth stating; but from a purely diagrammatic perspective, its demonstration is just as vivid and direct as the demonstration of Pythagoras: in fact, it is a generalization of that very demonstration.

We have discovered some other generalizations of Pythagoras which also have direct diagrammatic demonstrations using the same sliding-triangular-block method. For example, if one allows the initial triangle to be obtuse rather than right, the demonstration still works, as shown in figure 6. Notice that the two halves of the figure, while not squares, are isomorphic and hence have the same area.
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Figure 6

A cursory inspection shows that this demonstrates that the square on the hypotenuse of an obtuse triangle is greater than the sum of the squares on the other two sides; a slightly more careful inspection, together with a small amount of trigonometry, shows it to be a demonstration that the area of the square on the hypotenuse is the sum of the areas of the other sides squared plus twice their product with the cosine of the obtuse angle, i.e.      

|AC|2 =  |AB|2+|BC|2 + 2|AB||AC|Cos(ABC)

We were not previously aware of these generalizations of Pythagoras’ theorem, and discovered them by systematically trying various ways to remove the implicit assumptions used in interpreting the usual figure. The step from the diagram in figure 2 to figure 6 seems intuitively peculiar, but this intuition is not itself included in the diagram, or even in the way that the diagram is interpreted and understood. One sees that the outlines in the diagram must be squares if the triangles are right-angles, but this fact, as figure 6 shows, is irrelevant to the demonstration.

Perception and understanding

As we have argued, to understand the demonstration one must choose some aspects of the diagram and generalize over them. Choosing the right aspects is crucial, since the diagram has many ways to be generalized, several of which have interesting mathematical content. 

In order to grasp the relevant generalizations, one must perceive the relevant structure in the diagram: the congruent triangles, in particular. In order to compute that these triangles are congruent requires the perceptual process to recognize the equality of their sides. One needs to (literally) see that |AP| = |CK| = |MX|, etc., in order to perceive that the triangles are congruent and hence be able to apply universal generalization to the appropriate parts of the diagram. 

Note, however, that the particular line lengths involved in these perceptual judgments are precisely those which are lost in the generalization itself. That is, the perceptual process of seeing the diagram must make precise estimates of line lengths, but the generalization must then ignore these lengths. If the acts of visual perception of the diagram – of seeing the lines on the page – and of comprehension of the demonstration – of understanding why this shows that the theorem applies to any right triangle – were unified into a single process of diagrammatic comprehension, then the very involvement of these particular lengths in the machinery of perception would render invalid the generalization on which the demonstration depends. The rule of universal generalization is valid only when no assumptions are made about the things named in its antecedent – the ‘a’ in ‘P(a)’. But the perceptual process must make such assumptions: in fact, it must make use of very precise and particular information about the particular line segments displayed in the diagram. 

What this seems to show is that the processes of perception and comprehension must be separate, and that the latter depends on constructing a suitable internal description of the diagram whose syntactic structure defines which aspects of the diagram can be generalized. The “aha” experience may well be the construction of a suitable such description, one which generalizes naturally to give the well-known theorem. 

The assumption of relevance
There seems to be a  principle at work here rather similar to one of Grice’s conversational maxims: do not give irrelevant information. The figure shows us which lines must be identical in length, and it doesn’t show us any other accidental coincidences which would be irrelevant to the point it is making. (It is supposed to generalize to these as well, so it should not be understood as denying them.) The theorem is true of symmetric triangles, and figure 1 is then the appropriate case of the figure; but it is not an appropriate exemplar of  the class to use in a demonstration (in, one might say, a conversational act of persuasion). 

Notice that our hypothetical ignorant genius might well  have realized, on seeing figure 1, that it was a proof that the square on the hypotenuse of a symmetric right triangle had twice the area of the square on its short sides, without making the further generalization to Pythagoras’ theorem. This would satisfy both the Gricean maxim and normal heuristic rules of generalization, but applied to figure 1 rather than figure 2. This assumption of no irrelevant information seems to be crucial in moving from a diagram to the appropriate description of it to use as a basis for generalization. The reason we do not “see” the diagram as a special case of figure 6 is that if its communicative purpose was to suggest that generalization, then it would have been a very peculiar, and therefore misleading, special case to have chosen. This in spite of the fact that it is indeed a proper case, and that the cosine generalization of the theorem applies to it quite correctly.
Conclusion
We have focused on this famous example in order to make some very general claims. A single diagram cannot be a proof, because any diagram can be described in different ways which yield different generalizations. The process of seeing a diagram involves detailed comparisons of distances which need to be explicitly eliminated by the comprehension process, and this distinction forces us to discuss an intermediate descriptive representation to be appropriately generalized. The process of comprehension seems to involve a Gricean assumption that an illustrative diagram contains no irrelevant coincidences, and therefore any such diagram has meaning only when seen as part of a larger communicative act. Deliberately violating these communicative rules makes even this famous example, well-known for over two millennia, yield surprising new interpretations.
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